常微分方程学习活动6
第三章一阶线性方程组、第四章n阶线性方程的综合练习
本课程形成性考核综合练习共3次,内容主要分别是第一章初等积分法的综合练习、第二章基本定理的综合练习、第三章和第四章的综合练习,目的是通过综合性练习作业,同学们可以检验自己的学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.
要求:首先请同学们下载作业附件文档并进行填写,文档填写完成后请在本次作业页面中点击“去完成”按钮进入相应网页界面完成任务,然后请将所做完的作业文档以附件的形式上传到课程上,随后老师会在课程中进行评分。
一、填空题
1.若A(x)在(-∞,+∞)上连续,那么线性齐次方程组 , 的任一非零解在 空间 与x轴相交.
2.方程组 的任何一个解的图象是 维空间中的一条积分曲线.
3.向量函数组Y1(x), Y2(x),…,Yn(x)线性相关的 条件是它们的朗斯期行列式W(x)=0.
4.线性齐次微分方程组 ,的一个基本解组的个数不能多于 个.
5.若函数组 在区间 上线性相关,则它们的朗斯基行列式 在区间 上 .
6.函数组 的朗斯基行列式 是 .
7.二阶方程 的等价方程组是 .
8.若 和 是二阶线性齐次方程的基本解组,则它们 共同零点.
9.二阶线性齐次微分方程的两个解 , 成为其基本解组的充要条件是 .
10. 阶线性齐次微分方程线性无关解的个数最多为 个.
11.在方程y″+ p(x)y′+q(x)y = 0中,p(x), q(x)在(-∞,+∞)上连续,则它的任一非零解在xOy平面上 与x轴横截相交.
12.二阶线性方程 的基本解组是 .
13.线性方程 的基本解组是 .
14.方程 的所有解构成一个 维线性空间.
15.n阶线性齐次微分方程的所有解构成一个 维线性空间.
二、计算题
1.将下列方程式化为一阶方程组
(1)
(2)
2.求解下列方程组:
(1) (2)
3.求解下列方程组:
(1) (2)
4.求解下列方程组:
(1) (2)
5.已知方程 的一个解 ,求其通解.
6.试求下列n阶常系数线性齐次方程的通解
(1) (2)
7.试求下述各方程满足给定的初始条件的解:
(1) , ,
(2) , ,
8.求下列n阶常系数线性非齐次方程的通解:
(1)
(2)
三、证明题
1.设 矩阵函数 , 在(a, b)上连续,试证明,若方程组 与 有相同的基本解组,则 ? .
2.设在方程 中, 在区间 上连续且恒不为零,试证它的任意两个线性无关解的朗斯基行列式是在区间 上严格单调函数.
3.试证明:二阶线性齐次方程的任意两个线性无关解组的朗斯基行列式之比是一个不为零的常数.
四、应用题
1.一质量为m的质点由静止开始沉入液体中,当下沉时,液体的反作用与下沉的速度成正比,求此质点的运动规律
国家开放大学国开电大《常微分方程》形考任务6答案最新答案
觉得这篇文章对你有用的话,就打赏一下支持文章作者
评论0